
THE ULTIMATE GUIDE TO

Computational
Thinking

FOR EDUCATORS

PAGE 2
The Ultimate Guide to Computational Thinking for Educators

What is computational thinking?

Problem Solving.
More specifically, computational thinking is a set of skills and
processes that guide problem solving.

What makes this especially different from other problem-solving
processes is that it, in the end, results in an algorithm, which
is a series of steps a person or computer uses to perform a
task or solve a problem. Computational thinking is derived
from the process computer scientists use to develop code and
communicate with computers through algorithms.

So, computational thinking is coding?

Not quite. While computational thinking is the problem-solving
process that can lead to code, coding is the process of
programming different digital tools with algorithms. Coding is a
means to apply solutions developed through the processes of
computational thinking. Algorithms, in the case of coding, are a
series of logic-based steps that communicate with digital tools
and help them execute different actions.

However, computational thinking results in algorithms for both
computers and people, making it much more broadly applied
with and without technology. At its core, the steps of the
computational thinking process enable people to tackle large and
small problems.

PAGE 3
The Ultimate Guide to Computational Thinking for Educators

The Computational
Thinking Process

Computational thinking is a map from curiosity to understanding
that ensures the problem-solving process can be replicated or
automated in the future.

The process starts with data as the input and through a series
of steps, we – like computers (hence the name) – process the
information and produce some sort of output to the problem. In
this way, computational thinking results in an answer to whatever
question was asked at the outset and a systematic process for
how students arrived at the answer. Moreover, computational
thinking is about the process itself just as much as it is about
solving the problem.

Decomposition — Break the problem down into smaller,
more manageable parts.

Pattern Recognition — Analyze data and identify
similarities and connections among its different parts.

Abstraction— Identify the most relevant information needed
to solve the problem and eliminate the extraneous details.

Algorithmic Thinking— Develop a step-by-step process to
solve the problem so that the work is replicable by humans
or computers.

The computational thinking process
includes four key concepts:

PAGE 4
The Ultimate Guide to Computational Thinking for Educators

Both ‘plugged’ and ‘unplugged,’ computational thinking
underscores the course of student learning in an era in which
education is moving from content acquisition to higher-order
thinking skills. Beyond this, computational thinking requires
students to be mindful and intentional throughout the problem-
solving process, which helps them develop persistence and a
growth mindset.

As Marcos Navas, a technology facilitator with the Union City
School District in New Jersey, explained:

We are all computational thinkers and computer
scientists; our brains naturally recognize

patterns, create algorithms, and debug solutions.
When a problem arises, I tell my students to

figure it out and work with their peers. We do a
lot of hand holding, but we need to challenge

students to solve it. That’s not just a tip for
coding; it’s a lifelong skill they need.

Indeed, computational thinking is a lifelong skill that can and
should be built throughout the student learning experience. In
the remainder of this eBook, we will go into more depth about
each component of computational thinking and offer real-world
examples for integrating them in any subject area. We will
also explore why computational thinking is essential for future
readiness by cultivating digital skills and problem-solving prowess.

Let’s dive in!

https://www.edutopia.org/article/flexibility-computational-thinking

PAGE 5
The Ultimate Guide to Computational Thinking for Educators

Decomposition
The power of computational thinking starts with decomposition,
which is the process of breaking down complex problems into
smaller, more manageable parts. With decomposition, problems
that seem overwhelming at first become much more manageable.

Big Problem

Smaller Problem Smaller Problem

If you can’t solve a problem, then there is an
easier problem you can solve: find it.

GEORGE PÓLYA

Problems we encounter both in the course of student learning
and throughout our daily lives are ultimately comprised of smaller
problems we can more easily address. This process of breaking
down problems enables us to analyze the different aspects of
them, ground our thinking, and guide ourselves to an end point.

PAGE 6
The Ultimate Guide to Computational Thinking for Educators

Examples of Decomposition in Everyday Life
Decomposition is something we inherently do in our daily lives,
even if we don’t realize it.

If you hosted a holiday dinner, you used decomposition to select
the menu, enlist support from others in the kitchen, task people
with what to bring, determine the process by which to cook the
different elements, and set the time for the event.

If you went to the grocery store for said holiday dinner you used
decomposition to build your grocery list, guide the direction you
took as you meandered the aisles, the route you followed to and
from the store, and the vehicle in which you drove.

If you’ve implemented a new program or initiative at your school,
you used decomposition to build your strategic plan, which
included the program’s vision, strategy for gaining buy-in, annual
goals, and everything else involved.

PAGE 7
The Ultimate Guide to Computational Thinking for Educators

Examples of Decomposition in Curriculum
Indeed, decomposition is a powerful tool that guides how we
approach projects and tasks regularly. And it is also something
employed in student learning. Here are some examples for
accentuating these in curriculum.

English Language
Arts

Students analyze themes in a text by first
answering: Who is the protagonist and
antagonist? Where is the setting? What is
the conflict? What is the resolution?

Mathematics Students find the area of different shapes by
decomposing them into triangles.

Science
Students research the different organs in
order to understand how the human body
digests food.

Social Studies
Students explore a different culture by
studying the traditions, history, and norms
that comprise it.

Languages
Students learn about sentence structure in
a foreign language by breaking it down into
different parts like subject, verb, and object.

Arts
Students work to build the set for a play
by reviewing the scenes to determine their
setting and prop needs.

http://www.corestandards.org/Math/Content/6/G/A/1/

PAGE 8
The Ultimate Guide to Computational Thinking for Educators

Examples of Decomposition in Computer Science
Then, from a computer science and coding perspective,
decomposition can come into play when students are
programming a new game. For example, students need to
consider the characters, setting, and plot, as well as consider
how different actions will take place, how it will be deployed, and
so much more.

It’s hopefully clear that decomposition is deeply ingrained in how
we function daily and address problems both big and small. The
concept already exists with students, but students need to learn
how to recognize this process as it happens and leverage it when
they feel overwhelmed in the case of a problem, task, or project.
Decomposition teaches students to embrace ambiguity and
equips them with the confidence to learn new things.

Standard Movement

 Walk

Jump

Crouch

Attack

Spell

Confuse

Throw

Punch

Left

Right

Up

Down

Special

Mix Potion

Regenerate

Character Actions

PAGE 9
The Ultimate Guide to Computational Thinking for Educators

Pattern Recognition
As it sounds, pattern recognition is all about recognizing patterns.
Specifically, with computational thinking, pattern recognition
occurs as people study the different decomposed problems.

There are common ways we see patterns. Patterns are
the laws of nature and life that present themselves in all

disciplines of life — from the smallest microorganism
to macrocosm…While patterns aren’t always apparent,

they are continuous and autonomous.
AMY OESTREICHER

Through analysis, students recognize patterns or connections
among the different pieces of the larger problem. These patterns
can be both shared similarities and shared differences. This
concept is essential to building understanding amid dense
information and goes well beyond recognizing patterns amongst
sequences of numbers, characters, or symbols.

PAGE 10
The Ultimate Guide to Computational Thinking for Educators

Examples of Pattern Recognition in Everyday Life
Pattern recognition is the foundation of our knowledge. As infants,
we used patterns to make sense of the world around us, to begin
to respond verbally and grow our language skills, to develop
behavioral responses, and to cultivate connections in this world.

Beyond this, pattern recognition also occurs when scientists try to
identify the cause of a disease outbreak by looking for similarities
in the different cases to determine the source of the outbreak.

Additionally, when Netflix recommends shows based on your
interests or a chat bot pesters you on a website, the technology
(Artificial Intelligence and Machine Learning) relies on pattern
recognition.

Personally, I used pattern recognition recently when I created
a food diary for my dog to identify the source of his newest
allergic reaction. The culprit? Fish. And this is to add to a long list
including red meat, chicken, bison, and grains. But I digress.

https://www.sciencedaily.com/releases/2016/05/160505222938.htm

PAGE 11
The Ultimate Guide to Computational Thinking for Educators

Examples of Pattern Recognition in Curriculum
Pattern recognition applies in the classroom as well.

English Language
Arts

Students begin to define sonnets based on
similarities in separate examples.

Mathematics Students recognize the specific formulas
used to calculate slopes and intercepts.

Science
Students classify animals based on their
characteristics and articulate common
characteristics for the groupings.

Social Studies Students identify the potential impact different
economic trends reap by looking at data.

Languages
Students group different words in a foreign
language by looking at their roots to build a
better understanding of vocabulary.

Arts

Students categorize paintings based on
commonalities between artists’ aesthetics
and detail key characteristics that each
grouping presents.

PAGE 12
The Ultimate Guide to Computational Thinking for Educators

Examples of Pattern Recognition in Computer
Science
And in computer science, pattern recognition helps students
identify similarities between decomposed problems. If they are
coding a game, they may recognize similar objects, patterns, and
actions. Finding these allows them to apply the same, or slightly
modified, string of code to each, which makes their programming
more efficient.

Through the quest to build understanding in unfamiliar scenarios
or in the face of uncertainty, students learn to persist through
iteration and experimentation and accept that failure and struggle
are a part of the learning process.

Human Hat

Witch

Princess

Prince

Guard

Character Design

PAGE 13
The Ultimate Guide to Computational Thinking for Educators

Abstraction
Also called, pattern generalization, abstraction enables us to
navigate complexity and find relevance and clarity at scale.
Decomposition and pattern recognition broke down the complex,
and abstraction figures out how to work with the different parts
efficiently and accurately. This process occurs through filtering
out the extraneous and irrelevant in order to identify what’s most
important and connect each decomposed problem.

“But it is a pipe.”
No, it’s not. It’s a drawing of a pipe.

Get it? All representations of a thing are
inherently abstract. It’s very clever.

JOHN GREEN

Abstraction is similar to the selective filtering function in our
brains that gates the neural signals with which we are constantly
bombarded so we can make sense of our world and focus on
what’s essential to us.

https://www.psychologytoday.com/us/blog/brain-babble/201502/is-how-the-brain-filters-out-unimportant-details
https://www.psychologytoday.com/us/blog/brain-babble/201502/is-how-the-brain-filters-out-unimportant-details

PAGE 14
The Ultimate Guide to Computational Thinking for Educators

Examples of Abstraction in Everyday Life
Another way to think about abstraction is in the context of
those big concepts that inform how we think about the world
like Newton’s Laws of Motion, the Law of Supply and Demand,
or the Pythagorean Theorem. All of these required the people
behind them to think about big, broad, and complex concepts;
to break down the problem and to experiment; to find patterns
amongst the experimentations; and to eventually abstract this
concrete knowledge to package it into these sterile statements
that shelter us from the complexity and difficulty waded through
to arrive at this law.

Educators use abstraction when looking at vast sets of student
data to focus on the most relevant numbers and trends. And
educators also use it when helping a student complete an
assignment. There may be kids running around the classroom or
making loud noises, but they can tune that out to focus on what
the kid in need is asking – until of course it reaches an apex level
of rambunctiousness and an intervention must be had.

PAGE 15
The Ultimate Guide to Computational Thinking for Educators

Examples of Abstraction in Curriculum
Like the other elements of computational thinking, abstraction
occurs inherently and can be addressed throughout curriculum
with students. Here are some ideas.

English Language
Arts

Students summarize a novel into a book
review.

Mathematics
Students conduct a survey of peers and
analyze the data to note the key findings,
create visualizations, and present the results.

Science Students develop laws and theorems by
looking at similar formulas and equations.

Social Studies
Students coalesce the most important
details shared in articles about a current
event and write a brief about the event.

Languages

Students create a personal guide that
dictates when to use the formal and informal
‘you’ in Spanish class or the two ‘to know’
verbs in French, which, mind you, always
confounded me.

Arts
Students generalize chord progressions for
common musical genres into a set of general
principles they can communicate.

PAGE 16
The Ultimate Guide to Computational Thinking for Educators

Examples of Abstractions in Computer Science
Abstraction in coding is used to simplify strings of code into
different functions. It hides the underlying complexity in a
programming language, which makes it simpler to implement
algorithms and communicate with digital tools.

Abstraction helps students return to the larger problem that
prompted this whole computational thinking adventure and
identify the most important details from the earlier phases.

Understanding abstraction enables students to make sense of
problems they encounter, helping them to not be overwhelmed in
the face of something complex and to persist, compute, iterate,
and ideate.

CharacterSelect

Princess CrownIf character is add

Witch Pointy.HatIf character is add

Guard HelmetIf character is add

PAGE 17
The Ultimate Guide to Computational Thinking for Educators

Algorithmic Thinking
An algorithm is a process or formula for calculating answers,
sorting data, and automating tasks; and algorithmic thinking is the
process for developing an algorithm.

Effective algorithms make assumptions,
show a bias toward simple solutions,
trade off the costs of error against the

cost of delay, and take chances.
BRIAN CHRISTIAN & TOM GRIFFITHS

With algorithmic thinking, students endeavor to construct a
step-by-step process for solving a problem so that the work is
replicable by humans or computers. Algorithmic thinking is a
derivative of computer science and the process to develop code
and program applications. This approach automates the problem-
solving process by creating a series of systematic, logical steps
that intake a defined set of inputs and produce a defined set of
outputs based on these.

In other words, algorithmic thinking is not solving for a specific
answer; instead, it solves how to build a sequential, complete, and
replicable process that has an end point – an algorithm. Designing
an algorithm helps students to both communicate and interpret
clear instructions for a predictable, reliable output. As was said
earlier, this is the crux of computational thinking.

PAGE 18
The Ultimate Guide to Computational Thinking for Educators

Examples of Algorithms in Everyday Life
And like computational thinking and its other elements we’ve
discussed, algorithms are something we experience quite
regularly in our lives.

If you’re an amateur chef or a frozen meal aficionado, you follow
recipes and directions for preparing food, and that’s an algorithm.

When you’re feeling groovy and bust out in a dance routine
– maybe the Cha Cha Slide, the Macarena, or Flossing – you
are also following a routine that emulates an algorithm while
simultaneously being really cool.

Outlining a process for checking out books in a school library or
instructions for cleaning up at the end of the day is developing an
algorithm and letting your inner computer scientist shine.

Spreadable

Measure
Pancake mix

Add Water

Mix Well

Too Thick

PAGE 19
The Ultimate Guide to Computational Thinking for Educators

Examples of Algorithms in Curriculum
Beginning to develop students’ algorithmic prowess, however,
does not require formal practice with coding or even access
to technology. To get started, here are ideas for incorporating
algorithmic thinking in different subjects.

English Language
Arts

Students map a flow chart that details
directions for determining whether to use a
colon or dash in a sentence.

Mathematics

In a word problem, students develop
a step-by-step process for how they
answered the question that can then be
applied to similar problems.

Science Students articulate how to classify elements
in the periodic table.

Social Studies
Students describe a sequence of smaller
events in history that precipitated a much
larger event.

Languages

Students apply new vocabulary and
practice speaking skills to direct another
student to perform a task, whether it’s
ordering coffee at a café or navigating from
one point in a classroom to another.

Arts
Students create instructions for drawing
a picture that another student then has to
use to recreate the image.

PAGE 20
The Ultimate Guide to Computational Thinking for Educators

Examples of Algorithms in Computer Science
These are obviously more elementary examples; algorithms –
especially those used in coding – are often far more intricate and
complex. To contextualize algorithms in computer science and
programming, below are two examples.

Standardized Testing and Algorithms: Coding enables the
adaptive technology often leveraged in classrooms today. For
example, the shift to computer-based standardized tests has led
to the advent of adaptive assessments that pick questions based
on student ability as determined by correct and incorrect answers.

If students select the correct answer to a question, then the next
question is moderately more difficult. But if they answer wrong,
then the assessment offers a moderately easier question. This
occurs through an iterative algorithm that starts with a pool of
questions. After an answer, the pool is adjusted accordingly. This
repeats continuously.

The Omnipotent Google and Algorithms: Google’s search
results are determined (in part) by the PageRank algorithm, which
assigns a webpage’s importance based on the number of sites
linking to it.

So, if we google ‘what is an algorithm,’ we can bet that the
chosen pages have some of the most links to them for the topic
‘what is an algorithm.’ It’s still more complicated than this, of
course; if you are interested, this article goes into the intricacies of
the PageRank algorithm.

https://en.wikipedia.org/wiki/PageRank

PAGE 21
The Ultimate Guide to Computational Thinking for Educators

There are over 1.5 billion websites with billions more pages to
count, but thanks to algorithmic thinking we can type just about
anything into Google and expect to be delivered a curated list
of resources in under a second. This right here is the power of
algorithmic thinking.

 “The Google algorithm was a significant development.
I’ve had thank-you emails from people whose lives have
been saved by information on a medical website or who

have found the love of their life on a dating website.”
TIM BERNERS-LEE

In whatever way it’s approached in the classroom, algorithmic
thinking encourages students to communicate clearly and
logically. Students learn to persevere throughout its multiple
iterations, challenges, and solutions. To arrive at an algorithm
(especially as algorithms advance in complexity), they must apply
computational thinking and practice metacognition as they do
so. In this process, students become more adept critical thinkers,
eloquent communicators, and curious problem solvers that ask
bold questions and flourish in ambiguity and uncertainty.

PAGE 22
The Ultimate Guide to Computational Thinking for Educators

The Whole Shebang: Four Computational
Thinking Projects for Students

Now that we have explored the nuances of decomposition,
pattern recognition, abstraction, and algorithmic thinking, this
section will offer four project examples in math, English language
arts, science, and social studies. These can all be easily modified
to fit different grade levels, too.

Data Analysis in Math Class
In a middle school math class, students embarked on

an inquiry-driven project in which they curated and collected
data and analyzed it algebraically. They mapped the quantitative
variables in scatter plots to identify trends and then used r-value
representations to show their findings.

The teacher emphasized throughout this project that “data is
a tool to get people to hear you.” With concise analysis and
engaging visuals, students were able to create compelling
projects on topics about which they were passionate.

One student analyzed instances of breast cancer by using an
online database to curate data dating back to 1995. Having had
her mother diagnosed with the disease as well as two family
friends, she wanted to study the rates of mortality and measure
the rate of increases in diagnoses. Looking at the data, she
applied computational thinking skills to find patterns and abstract
the most important information.

https://www.iste.org/explore/Computational-Thinking/Students-use-computational-thinking-to-analyze-real-problems

PAGE 23
The Ultimate Guide to Computational Thinking for Educators

Understanding Character Connections in
English Language Arts

Language arts classes are also opportunities to leverage
computational thinking in the classroom. In this example, students
used computational thinking skills to perform literary analysis
on books like Hamlet and Harry Potter. Students developed
network diagrams and interaction graphs to abstract the different
connections between characters.

This technique helped contextualize the literature for students so
they can better create understanding about the work, like power
dynamics or important relationships that drive the narrative. This
helped students to build a more complete understanding of the
readings and track the flow of narratives on anything from the
Cat in the Hat to Beowulf. As explained by the writer, this sort of
analysis enabled students to understand the questions that data
can answer and what data analysis can be automated.

Using Design Thinking to Build Models in
Science

In this Science class, students applied computational thinking,
physics, and engineering design to build earthquake resistant
bridges. The unit started with understanding the function of
bridges and the different types. Students then moved to studying
earthquakes and the impact of their forces.

When it came time to design the earthquake resistant bridge,
students used their computational thinking skills. Computational
thinking enabled them to analyze a variety of bridge models to
find patterns in their structure and abstract from this the important
elements needed in a functional design.

https://www.edsurge.com/news/2018-11-28-helping-students-see-hamlet-and-harry-potter-in-a-new-light-with-computational-thinking
https://scholarworks.boisestate.edu/edtech_facpubs/190/

PAGE 24
The Ultimate Guide to Computational Thinking for Educators

As they tested the different prototypes, computational thinking
allowed them to collect data and find opportunities to improve
the structure.

This can be a great unplugged project that hones student
collaboration and critical thinking through working to design
functional models and also enhance their engineering design skills.

Decoding Cryptography in Social Studies
In studying the importance of cryptography for sending

coded messages in World War II, specifically focusing on the
German Enigma machine, students learned how secret codes
can be both developed and cracked using algorithms and
other aspects of computational thinking. In this example of
computational thinking, students designed their own cipher wheel
to send coded messages and learned how algorithms are integral
to developing coded languages.

While this example is great to engage students in a unit about
World War II with collaborative, hands-on practice, it can also
be translated into similar projects for other coded languages
used in combat, Morse code, or language in general. Language,
in essence, is a series of patterns from which we can abstract
different rules, making it an excellent way to engage students in
computational thinking in real-world contexts. Beyond growing
their understanding of code in World War II in this unit, students
also deepen their understanding of language and ability to
recognize patterns that exist all around us.

https://en.wikipedia.org/wiki/Enigma_machine
http://ct.excelwa.org/social-studies/the-enigma-machine/
http://ct.excelwa.org/social-studies/the-enigma-machine/

PAGE 25
The Ultimate Guide to Computational Thinking for Educators

More Than Just Problem Solving
Computational thinking is a shift in how we approach problem
solving. With a formulaic process, we can navigate complexity
and stay focused on what is important without losing site of the
solution amongst all the noise. With it, we can solve problems
with mass amounts of data and lead unknown journeys through
these data-filled landscapes. This ability to navigate complex
information and to think in a way that complements technological
processes is essential to student readiness.

Through this process, students learn to ask bold questions
and persist through complexities toward yet-to-be imagined
solutions. In applying computational thinking, students
collect and analyze resources, think critically and creatively
in collaborative environments, and develop a growth mindset
by learning to embrace ambiguity and reframe challenges as
opportunities, both with and without technology.

Beyond critical thinking and other problem-solving skills,
computational thinking builds essential attitudes like:

•	 Embracing ambiguity with confidence.

•	 Persisting through iteration and experimentation.

•	 Practicing teamwork.

•	 Leading learning with inquiry.

•	 Situating oneself as a lifelong learner.

PAGE 26
The Ultimate Guide to Computational Thinking for Educators

These abilities empower students to be intentional and mindful in
their thoughts, their actions, and their connections they build.

What’s the takeaway?
Computational thinking is more than just problem solving.

As a foundation for coding, computational thinking encourages
us to reflect clearly on a problem we’re solving and intentionally
program solutions for it.

As a foundation for technology integration, computational
thinking encourages us to consider how we can leverage
technology to aid us in solving these problems – to automate
certain tasks.

As a foundation for problem solving,
computational thinking encourages us to be
diligent and organized in our work, to plan from
the outset how we want to solve a problem but to
embrace the fluidity of the process as we come to
more and more understanding of the data
and information we’re navigating.

As a foundation for thought,
computational thinking encourages us
to push the bounds of our creativity, to
imagine impossible solutions and strive
to make these possible, and to think
according to potential and not limits.

Copyright © 2019 by Learning.com. All rights reserved.

No part of this book may be used or reproduced in any format without written
permission except in the case of brief quotations used in articles or reviews.

To learn more visit Learning.com or
contact us at hello@learning.com.

https://www.learning.com/
mailto:hello%40learning.com?subject=
https://www.facebook.com/Learningdotcom
https://twitter.com/learningdotcom
https://www.youtube.com/channel/UCnekF-NxYtJRnW-G4ENqKOw
https://www.pinterest.com/learningdotcom/
https://www.linkedin.com/company/learning-com/

